Green Energetic Materials
Contents: List of Contributors ix
Preface xi
1 Introduction to Green Energetic Materials 1 Tore Brinck
1.1 Introduction 1
1.2 Green Chemistry and Energetic Materials 2
1.3 Green Propellants in Civil Space Travel 5
1.3.1 Green Oxidizers to Replace Ammonium Perchlorate 6
1.3.2 Green Liquid Propellants to Replace Hydrazine 8
1.3.3 Electric Propulsion 10
1.4 Conclusions 10
References 11
2 Theoretical Design of Green Energetic Materials: PredictingStability, Detection, and Synthesis and Performance 15 Tore Brinck and Martin Rahm
2.1 Introduction 15
2.2 Computational Methods 17
2.3 Green Propellant Components 20
2.3.1 Trinitramide 20
2.3.2 Energetic Anions Rich in Oxygen and Nitrogen 24
2.3.3 The Pentazolate Anion and its Oxy-Derivatives 27
2.3.4 Tetrahedral N4 33
2.4 Conclusions 38
References 39
3 Some Perspectives on Sensitivity to Initiation ofDetonation 45 Peter Politzer and Jane S. Murray
3.1 Energetic Materials and Green Chemistry 45
3.2 Sensitivity: Some Background 46
3.3 Sensitivity Relationships 47
3.4 Sensitivity: Some Relevant Factors 48
3.4.1 Amino Substituents 48
3.4.2 Layered (Graphite-Like) Crystal Lattice 49
3.4.3 Free Space in the Crystal Lattice 50
3.4.4 Weak Trigger Bonds 50
3.4.5 Molecular Electrostatic Potentials 51
3.5 Summary 56
Acknowledgments 56
References 57
4 Advances Toward the Development of Green Pyrotechnics 63 Jesse J. Sabatini
4.1 Introduction 63
4.2 The Foundation of Green Pyrotechnics 65
4.3 Development of Perchlorate-Free Pyrotechnics 67
4.3.1 Perchlorate-Free Illuminating Pyrotechnics 67
4.3.2 Perchlorate-Free Simulators 72
4.4 Removal of Heavy Metals from Pyrotechnic Formulations 75
4.4.1 Barium-Free Green-Light Emitting Illuminants 76
4.4.2 Barium-Free Incendiary Compositions 78
4.4.3 Lead-Free Pyrotechnic Compositions 80
4.4.4 Chromium-Free Pyrotechnic Compositions 82
4.5 Removal of Chlorinated Organic Compounds from PyrotechnicFormulations 83
4.5.1 Chlorine-Free Illuminating Compositions 83
4.6 Environmentally Friendly Smoke Compositions 84
4.6.1 Environmentally Friendly Colored Smoke Compositions 84
4.6.2 Environmentally Friendly White Smoke Compositions 88
4.7 Conclusions 93
Acknowledgments 94
Abbreviations 95
References 97
5 Green Primary Explosives 103 Karl D. Oyler
5.1 Introduction 103
5.1.1 What is a Primary Explosive? 104
5.1.2 The Case for Green Primary Explosives 107
5.1.3 Legacy Primary Explosives 108
5.2 Green Primary Explosive Candidates 110
5.2.1 Inorganic Compounds 111
5.2.2 Organic-Based Compounds 116
5.3 Conclusions 125
Acknowledgments 126
References 126
6 Energetic Tetrazole N-oxides 133 Thomas M. Klap otke and J org Stierstorfer
6.1 Introduction 133
6.2 Rationale for the Investigation of Tetrazole N-oxides133
6.3 Synthetic Strategies for the Formation of Tetrazole N-oxides136
6.3.1 HOF CH3CN 136
6.3.2 Oxone1 137
6.3.3 CF3COOH/H2O2 138
6.3.4 Cyclization of Azido-Oximes 139
6.4 Recent Examples of Energetic Tetrazole N-oxides 139
6.4.1 Tetrazole N-oxides 140
6.4.2 Bis(tetrazole-N-oxides) 150
6.4.3 5,50-Azoxytetrazolates 164
6.4.4 Bis(tetrazole)dihydrotetrazine and bis(tetrazole)tetrazineN-oxides 170
6.5 Conclusion 173
Acknowledgments 174
References 174
7 Green Propellants Based on Dinitramide Salts: MasteringStability and Chemical Compatibility Issues 179 Martin Rahm and Tore Brinck
7.1 The Promises and Problems of Dinitramide Salts 179
7.2 Understanding Dinitramide Decomposition 181
7.2.1 The Dinitramide Anion 182
7.2.2 Dinitraminic Acid 184
7.2.3 Dinitramide Salts 185
7.3 Vibrational Sum-Frequency Spectroscopy of ADN and KDN189
7.4 Anomalous Solid-State Decomposition 192
7.5 Dinitramide Chemistry 194
7.5.1 Compatibility and Reactivity of ADN 194
7.5.2 Dinitramides in Synthesis 196
7.6 Dinitramide Stabilization 198
7.7 Conclusions 200
References 201
8 Binder Materials for Green Propellants 205 Carina Elds ater and Eva Malmstr om
8.1 Binder Properties 209
8.2 Inert Polymers for Binders 210
8.2.1 Polybutadiene 210
8.2.2 Polyethers 212
8.2.3 Polyesters and Polycarbonates 213
8.3 Energetic Polymers 215
8.3.1 Nitrocellulose 215
8.3.2 Poly(glycidyl azide) 216
8.3.3 Poly(3-nitratomethyl-3-methyloxetane) 220
8.3.4 Poly(glycidyl nitrate) 221
8.3.5 Poly[3,3-bis(azidomethyl)oxetane] 222
8.4 Energetic Plasticisers 223
8.5 Outlook for Design of New Green Binder Systems 223
8.5.1 Architecture of the Binder Polymer 224
8.5.2 Chemical Composition and Crosslinking Chemistries 225
References 226
9 The Development of Environmentally SustainableManufacturing Technologies for Energetic Materials 235 David E. Chavez
9.1 Introduction 235
9.2 Explosives 236
9.2.1 Sustainable Manufacturing of Explosives 236
9.2.2 Environmentally Friendly Materials for Initiation 240
9.2.3 Synthesis of Explosive Precursors 244
9.3 Pyrotechnics 246
9.3.1 Commercial Pyrotechnics Manufacturing 246
9.3.2 Military Pyrotechnics 248
9.4 Propellants 249
9.4.1 The Green Missile Program 249
9.4.2 Other Rocket Propellant Efforts 250
9.4.3 Gun Propellants 251
9.5 Formulation 253
9.6 Conclusions 254
Acknowledgments 254
Abbreviations and Acronyms 255
References 256
10 Electrochemical Methods for Synthesis of EnergeticMaterials and Remediation of Waste Water 259 Lynne Wallace
10.1 Introduction 259
10.2 Practical Aspects 260
10.3 Electrosynthesis 262
10.3.1 Electrosynthesis of EM and EM Precursors 262
10.3.2 Electrosynthesis of Useful Reagents 265
10.4 Electrochemical Remediation 266
10.4.1 Direct Electrolysis 267
10.4.2 Indirect Electrolytic Methods 269
10.4.3 Electrokinetic Remediation of Soils 272
10.4.4 Electrodialysis 273
10.5 Current Developments and Future Directions 273
References 275
Index 281
Autor | Brinck, Tore |
---|---|
Ilmumisaeg | 2014 |
Kirjastus | John Wiley & Sons Inc |
Köide | Kõvakaaneline |
Bestseller | Ei |
Lehekülgede arv | 302 |
Pikkus | 244 |
Laius | 244 |
Keel | American English |