Structural Masonry Designers' Manual
197,50 €
Tellimisel
Tarneaeg:
2-4 nädalat
Tootekood
9780632056125
Description:
This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. New information on sustainability issues, innovation in masonry, healt...
This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. New information on sustainability issues, innovation in masonry, healt...
Description:
This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. New information on sustainability issues, innovation in masonry, health and safety issues and technical developments has been added.
Review:
'This is essential reading for all civil structural design offices involved with masonry design and is now established as the standard work on the subject.' - New Civil Engineer 'This is an excellent reference ... especially for sites with difficult ground conditions.' - The Structural Engineer 'Looks crisp and with a modern style of illustration, is easy to read for a technical manual. As a full and comprehensive review of structural masonry, authoritatively written and covering most of the aspects likely to be encountered in practice, it is a hugely useful manual.' Institution of Structural Engineers 'This book is a precious gift for the consulting/ design engineers and students.' Journal of Structural Engineering
Table of Contents:
Chapter 1 Introduction; 1.1 Present structural forms; 1.2 Examples of structural layout suiting masonry; 1.3 Reinforced and post-tensioned masonry; 1.4 Arches and vaults; 1.5 The robustness of masonry structures; 1.6 Prefabrication; 1.7 Future tradesmen; 1.8 Engineering education; Chapter 2 Advantages & disadvantages of structural masonry; 2.1 Engineering education; 2.1.1 Cost; 2.1.2 Speed of erection; 2.1.3 Aesthetics; 2.1.4 Durability; 2.1.5 Sound insulation; 2.1.6 Thermal insulation; 2.1.7 Fire resistance and accidental damage; 2.1.8 Capital and current energy requirements; 2.1.9 Resistance to movement; 2.1.10 Repair and maintenance; 2.1.11 Ease of combination with other materials; 2.1.12 Availability of materials and labour; 2.1.13 Recyclability; 2.2 Disadvantages; 2.2.1 Lack of education in masonry; 2.2.2 Increase in obstructed area over steel and reinforced concrete; 2.2.3 Problems with some isolated details; 2.2.4 Foundations; 2.2.5 Large openings; 2.2.6 Beams and slabs; 2.2.7 Control joints; 2.2.8 Health & safety considerations; Chapter 3 Design philosophy; 3.1 Strength of material; 3.2 Exploitation of cross-section; 3.3 Exploitation of essential building elements; Chapter 4 Limit state design; Chapter 5 Basis of design (1): vertical loading; 5.1 Compressive strength of masonry; 5.2 Characteristic strength and characteristic load; 5.3 Partial safety factors for loads; 5.4 Characteristic compressive strength of masonry; 5.4.1 Brickwork; 5.4.2 Blockwork; 5.4.3 Natural stone masonry and random rubble masonry; 5.4.4 Alternative construction techniques; 5.5 Partial safety factors for material strength; 5.5.1 Manufacturing control (BS 5628, clause 27.2.1); 5.5.2 Construction control; 5.6 Slenderness ratio; 5.7 Horizontal and vertical lateral supports; 5.7.1 Methods of compliance: Walls - horizontal lateral supports; 5.7.2 Methods of compliance: Walls - vertical lateral supports; 5.8 Effective height or length: Walls; 5.9 Effective thickness of walls; 5.9.1 Solid walls; 5.9.2 Cavity walls; 5.10 Loadbearing capacity reduction factor; 5.11 Design compressive strength of a wall; 5.12 Columns; 5.12.1 Slenderness ratio: Columns; 5.12.2 Columns formed by openings; 5.12.3 Design strength; 5.12.4 Columns or walls or small plan area; 5.13 Eccentric loading; 5.14 Combined effect of slenderness and eccentricity of load; 5.14.1 Walls; 5.14.2 Columns; 5.15 Concentrated loads; Chapter 6 Basis of design (2): lateral loading - tensile and shear strength; 6.1 Direct tensile stress; 6.2 Characteristic flexural strength (tensile) of masonry; 6.2.1 Orthogonal ration; 6.3 Moments of resistance: General; 6.3.1 Moments of resistance; uncracked sections; 6.3.2 Moments of resistance; Cracked sections; 6.4 Cavity Walls; 6.4.1 Vertical twist ties; 6.4.2 Double-triangle and wire butterfly ties; 6.4.3 Selection of ties; 6.4.4 Double-lead (collar-jointed) walls; 6.4.5 Grouted cavity walls; 6.4.6 Differing orthogonal ratios; 6.5 Effective eccentricity method of design; 6.6 Arch method of design; 6.6.1 Vertical arching; 6.6.2 Vertical arching: return walls; 6.6.3 Horizontal arching; 6.7 Free-standing walls; 6.7.1 General; 6.7.2 Design bending moments; 6.7.3 Design moment of resistance; 6.8 Retaining walls; 6.9 Panel walls; 6.9.1 Limiting dimensions; 6.9.2 Design methods; 6.9.3 Design bending moment; 6.9.4 Design moments of resistance; 6.9.5 Design of ties; 6.10 Propped cantilever wall design; 6.10.1 Geometric and other sections in shear; 6.11 Eccentricity of loading in plane of wall; 6.11.1 Design of walls loaded eccentrically in the plane of the wall; 6.12 Walls subjected to shear forces; 6.12.1 Characteristic and design shear strength; 6.12.2 Resistance to shear; Chapter 7 Strapping, propping and tying of loadbearing masonry; 7.1 Structural action; 7.2 Horizontal movement; 7.3 Shear keying between wall and floors; 7.4 Holding down roofs subject to upward forces; 7.5 Areas of concern; 7.6 Other factors influencing the details of connections; 7.7 Illustrated examples of strapping and tying; 7.8 Design examples: Straps and ties for a three-storey masonry building; Chapter 8 Stability, accidental damage and progressive collapse;8.1 Progressive collapse; 8.2 Stability; 8.3 Accidental forces (BS 5628, clause 20); 8.4 During construction; 8.5 Extent of damage; 8.6 Design for accidental damage; 8.6.1 Partial safety factors; 8.6.2 Methods (options) of checking; 8.6.3 Loadbearing elements; 8.6.4 Protected member; 8.6.5 General notes; Chapter 9 Structural elements and forms; 9.1 Single-leaf walls; 9.2 Double-leaf collar-jointed walls; 9.3 Double-leaf cavity walls; 9.4 Double-leaf grouted cavity walls; 9.5 Faced walls; 9.6 Veneered walls; 9.7 Walls with improved section modulus; 9.7.1 Chevron or zig-zag walls; 9.7.2 Diaphragm walls; 9.7.3 Mass filled diaphragms; 9.7.4 Piered walls; 9.7.5 Fin walls; 9.8 Reinforced walls; 9.9 Post-tensioned walls; 9.10 Columns; 9.11 Arches; 9.12 Circular and elliptical tube construction; 9.13 Composite construction; 9.14 Horizontally reinforced masonry; 9.15 Chimneys; 9.16 Crosswall construction; 9.17 Cellular construction; 9.18 Column and plate floor construction; 9.19 Combined forms of construction; 9.20 Diaphragm wall and plate roof construction; 9.21 Fin wall and plate roof construction; 9.22 Miscellaneous wall and plate roof construction; 9.23 Spine wall construction; 9.24 Arch and buttressed construction; 9.25 Compression tube construction; Chapter 10 Design of masonry elements (1): Vertically loaded; 10.1 Principle of design; 10.2 Estimation of element size required; 10.3 Sequence of design; 10.4 Design of solid walls; 10.5 Design of cavity walls; 10.5.1 Ungrouted cavity walls; 10.5.2 Grouted cavity walls; 10.5.3 Double-leaf (or collar-jointed) walls; 10.6 Design of walls with stiffening piers; 10.7 Masonry columns; 10.8 Diaphragm walls; 10.9 Concentrated loads; Chapter 11 Design of masonry elements (2): Combined bending and axial loading; 11.1 Method of design; Chapter 12 Design of single-storey buildings; 12.1 Design considerations; 12.2 Design procedure; Chapter 13 Fin and diaphragm walls in tall single-storey buildings; 13.1 Comparison of fin and diaphragm walls; 13.2 Design and construction details; 13.3 Architectural design and detailing; 13.3.1 Services; 13.3.2 Sound and thermal insulation; 13.3.3 Damp proof courses and membranes; 13.3.4 Cavity cleaning; 13.4 Structural detailing; 13.4.1 Foundations; 13.4.2 Joints; 13.4.3 Wall opening; 13.4.4 Construction of capping beam; 13.4.5 Temporary propping and scaffolding; 13.5 Structural design: General; 13.5.1 Design principles: Propped cantilever; 13.5.2 Calculate design loadings; 13.5.3 Consider levels of critical stresses; 13.5.4 Design bending moments; 13.5.5 Stability moment of resistance; 13.5.6 Shear lag; 13.5.7 Principal tensile stress; 13.6 Design symbols: Fin and diaphragm walls; 13.7 Fin walls: Structural design considerations; 13.7.1 Interaction between leaves; 13.7.2 Spacing of fins; 13.7.3 Size of fins; 13.7.4 Effective section and trial section; 13.8 Example 1: fin wall; 13.8.1 Design problem; 13.8.2 Design approach; 13.8.3 Characteristic loads; 13.8.4 Design loads; 13.8.5 Design cases (as shown in figure 13.42); 13.8.6 Deflection of roof wind girder; 13.8.7 Effective flange width for T profile; 13.8.8 Spacing of fins; 13.8.9 Trial section; 13.8.10 Consider propped cantilever action; 13.8.11 Stability moment of resistance; 13.8.12 Allowable flexural compressive stresses; 13.8.13 Calculate MRs and compare with Mb; 13.8.14 Bending moment diagrams; 13.8.15 Consider stresses at level Mw; 13.8.16 Design flexural stress at Mw levels; 13.8.17 Consider fins and deflected roof prop; 13.9 Diaphragm wall: Structural design considerations; 13.9.1 Determination of rib centres, Br; 13.9.2 Depth of diaphragm wall and properties of sections; 13.9.3 Shear stress coefficient, K1; 13.9.4 Trial section coefficients, K2 and Z; 13.10 Example 2: Diaphragm wall; 13.10.1 Design problem; 13.10.2 Characteristic and design loads; 13.10.3 Select trial section; 13.10.4 Determine wind and moment MRs at base; 13.10.5 Consider the stress at level Mw; 13.10.6 Consider diaphragm with deflected roof prop; 13.10.7 Calculate the shear stress; 13.10.8 Stability of transverse shear walls; 13.10.9 Summary; 13.11 Other applications; Chapter 14 Design of multi-storey structures; 14.1 Structural forms; 14.1.1 Stability; 14.1.2 External walls; 14.1.3 Provision for services; 14.1.4 Movement joints; 14.1.5 Vertical alignment of loadbearing walls; 14.1.6 Foundations; 14.1.7 Flexibility; 14.1.8 Concrete roof slab/loadbearing wall connections; 14.1.9 Accidental damage; 14.1.10 Choice of brick, block and mortar strengths; 14.2 Crosswall construction; 14.2.1 Stability; 14.2.2 External cla
This major handbook covers the structural use of brick and blockwork. A major feature is a series of step-by-step design examples of typical elements and buildings. The book has been revised to include updates to the code of practice BS 5628:2000-2 and the 2004 version of Part A of the Building Regulations. New information on sustainability issues, innovation in masonry, health and safety issues and technical developments has been added.
Review:
'This is essential reading for all civil structural design offices involved with masonry design and is now established as the standard work on the subject.' - New Civil Engineer 'This is an excellent reference ... especially for sites with difficult ground conditions.' - The Structural Engineer 'Looks crisp and with a modern style of illustration, is easy to read for a technical manual. As a full and comprehensive review of structural masonry, authoritatively written and covering most of the aspects likely to be encountered in practice, it is a hugely useful manual.' Institution of Structural Engineers 'This book is a precious gift for the consulting/ design engineers and students.' Journal of Structural Engineering
Table of Contents:
Chapter 1 Introduction; 1.1 Present structural forms; 1.2 Examples of structural layout suiting masonry; 1.3 Reinforced and post-tensioned masonry; 1.4 Arches and vaults; 1.5 The robustness of masonry structures; 1.6 Prefabrication; 1.7 Future tradesmen; 1.8 Engineering education; Chapter 2 Advantages & disadvantages of structural masonry; 2.1 Engineering education; 2.1.1 Cost; 2.1.2 Speed of erection; 2.1.3 Aesthetics; 2.1.4 Durability; 2.1.5 Sound insulation; 2.1.6 Thermal insulation; 2.1.7 Fire resistance and accidental damage; 2.1.8 Capital and current energy requirements; 2.1.9 Resistance to movement; 2.1.10 Repair and maintenance; 2.1.11 Ease of combination with other materials; 2.1.12 Availability of materials and labour; 2.1.13 Recyclability; 2.2 Disadvantages; 2.2.1 Lack of education in masonry; 2.2.2 Increase in obstructed area over steel and reinforced concrete; 2.2.3 Problems with some isolated details; 2.2.4 Foundations; 2.2.5 Large openings; 2.2.6 Beams and slabs; 2.2.7 Control joints; 2.2.8 Health & safety considerations; Chapter 3 Design philosophy; 3.1 Strength of material; 3.2 Exploitation of cross-section; 3.3 Exploitation of essential building elements; Chapter 4 Limit state design; Chapter 5 Basis of design (1): vertical loading; 5.1 Compressive strength of masonry; 5.2 Characteristic strength and characteristic load; 5.3 Partial safety factors for loads; 5.4 Characteristic compressive strength of masonry; 5.4.1 Brickwork; 5.4.2 Blockwork; 5.4.3 Natural stone masonry and random rubble masonry; 5.4.4 Alternative construction techniques; 5.5 Partial safety factors for material strength; 5.5.1 Manufacturing control (BS 5628, clause 27.2.1); 5.5.2 Construction control; 5.6 Slenderness ratio; 5.7 Horizontal and vertical lateral supports; 5.7.1 Methods of compliance: Walls - horizontal lateral supports; 5.7.2 Methods of compliance: Walls - vertical lateral supports; 5.8 Effective height or length: Walls; 5.9 Effective thickness of walls; 5.9.1 Solid walls; 5.9.2 Cavity walls; 5.10 Loadbearing capacity reduction factor; 5.11 Design compressive strength of a wall; 5.12 Columns; 5.12.1 Slenderness ratio: Columns; 5.12.2 Columns formed by openings; 5.12.3 Design strength; 5.12.4 Columns or walls or small plan area; 5.13 Eccentric loading; 5.14 Combined effect of slenderness and eccentricity of load; 5.14.1 Walls; 5.14.2 Columns; 5.15 Concentrated loads; Chapter 6 Basis of design (2): lateral loading - tensile and shear strength; 6.1 Direct tensile stress; 6.2 Characteristic flexural strength (tensile) of masonry; 6.2.1 Orthogonal ration; 6.3 Moments of resistance: General; 6.3.1 Moments of resistance; uncracked sections; 6.3.2 Moments of resistance; Cracked sections; 6.4 Cavity Walls; 6.4.1 Vertical twist ties; 6.4.2 Double-triangle and wire butterfly ties; 6.4.3 Selection of ties; 6.4.4 Double-lead (collar-jointed) walls; 6.4.5 Grouted cavity walls; 6.4.6 Differing orthogonal ratios; 6.5 Effective eccentricity method of design; 6.6 Arch method of design; 6.6.1 Vertical arching; 6.6.2 Vertical arching: return walls; 6.6.3 Horizontal arching; 6.7 Free-standing walls; 6.7.1 General; 6.7.2 Design bending moments; 6.7.3 Design moment of resistance; 6.8 Retaining walls; 6.9 Panel walls; 6.9.1 Limiting dimensions; 6.9.2 Design methods; 6.9.3 Design bending moment; 6.9.4 Design moments of resistance; 6.9.5 Design of ties; 6.10 Propped cantilever wall design; 6.10.1 Geometric and other sections in shear; 6.11 Eccentricity of loading in plane of wall; 6.11.1 Design of walls loaded eccentrically in the plane of the wall; 6.12 Walls subjected to shear forces; 6.12.1 Characteristic and design shear strength; 6.12.2 Resistance to shear; Chapter 7 Strapping, propping and tying of loadbearing masonry; 7.1 Structural action; 7.2 Horizontal movement; 7.3 Shear keying between wall and floors; 7.4 Holding down roofs subject to upward forces; 7.5 Areas of concern; 7.6 Other factors influencing the details of connections; 7.7 Illustrated examples of strapping and tying; 7.8 Design examples: Straps and ties for a three-storey masonry building; Chapter 8 Stability, accidental damage and progressive collapse;8.1 Progressive collapse; 8.2 Stability; 8.3 Accidental forces (BS 5628, clause 20); 8.4 During construction; 8.5 Extent of damage; 8.6 Design for accidental damage; 8.6.1 Partial safety factors; 8.6.2 Methods (options) of checking; 8.6.3 Loadbearing elements; 8.6.4 Protected member; 8.6.5 General notes; Chapter 9 Structural elements and forms; 9.1 Single-leaf walls; 9.2 Double-leaf collar-jointed walls; 9.3 Double-leaf cavity walls; 9.4 Double-leaf grouted cavity walls; 9.5 Faced walls; 9.6 Veneered walls; 9.7 Walls with improved section modulus; 9.7.1 Chevron or zig-zag walls; 9.7.2 Diaphragm walls; 9.7.3 Mass filled diaphragms; 9.7.4 Piered walls; 9.7.5 Fin walls; 9.8 Reinforced walls; 9.9 Post-tensioned walls; 9.10 Columns; 9.11 Arches; 9.12 Circular and elliptical tube construction; 9.13 Composite construction; 9.14 Horizontally reinforced masonry; 9.15 Chimneys; 9.16 Crosswall construction; 9.17 Cellular construction; 9.18 Column and plate floor construction; 9.19 Combined forms of construction; 9.20 Diaphragm wall and plate roof construction; 9.21 Fin wall and plate roof construction; 9.22 Miscellaneous wall and plate roof construction; 9.23 Spine wall construction; 9.24 Arch and buttressed construction; 9.25 Compression tube construction; Chapter 10 Design of masonry elements (1): Vertically loaded; 10.1 Principle of design; 10.2 Estimation of element size required; 10.3 Sequence of design; 10.4 Design of solid walls; 10.5 Design of cavity walls; 10.5.1 Ungrouted cavity walls; 10.5.2 Grouted cavity walls; 10.5.3 Double-leaf (or collar-jointed) walls; 10.6 Design of walls with stiffening piers; 10.7 Masonry columns; 10.8 Diaphragm walls; 10.9 Concentrated loads; Chapter 11 Design of masonry elements (2): Combined bending and axial loading; 11.1 Method of design; Chapter 12 Design of single-storey buildings; 12.1 Design considerations; 12.2 Design procedure; Chapter 13 Fin and diaphragm walls in tall single-storey buildings; 13.1 Comparison of fin and diaphragm walls; 13.2 Design and construction details; 13.3 Architectural design and detailing; 13.3.1 Services; 13.3.2 Sound and thermal insulation; 13.3.3 Damp proof courses and membranes; 13.3.4 Cavity cleaning; 13.4 Structural detailing; 13.4.1 Foundations; 13.4.2 Joints; 13.4.3 Wall opening; 13.4.4 Construction of capping beam; 13.4.5 Temporary propping and scaffolding; 13.5 Structural design: General; 13.5.1 Design principles: Propped cantilever; 13.5.2 Calculate design loadings; 13.5.3 Consider levels of critical stresses; 13.5.4 Design bending moments; 13.5.5 Stability moment of resistance; 13.5.6 Shear lag; 13.5.7 Principal tensile stress; 13.6 Design symbols: Fin and diaphragm walls; 13.7 Fin walls: Structural design considerations; 13.7.1 Interaction between leaves; 13.7.2 Spacing of fins; 13.7.3 Size of fins; 13.7.4 Effective section and trial section; 13.8 Example 1: fin wall; 13.8.1 Design problem; 13.8.2 Design approach; 13.8.3 Characteristic loads; 13.8.4 Design loads; 13.8.5 Design cases (as shown in figure 13.42); 13.8.6 Deflection of roof wind girder; 13.8.7 Effective flange width for T profile; 13.8.8 Spacing of fins; 13.8.9 Trial section; 13.8.10 Consider propped cantilever action; 13.8.11 Stability moment of resistance; 13.8.12 Allowable flexural compressive stresses; 13.8.13 Calculate MRs and compare with Mb; 13.8.14 Bending moment diagrams; 13.8.15 Consider stresses at level Mw; 13.8.16 Design flexural stress at Mw levels; 13.8.17 Consider fins and deflected roof prop; 13.9 Diaphragm wall: Structural design considerations; 13.9.1 Determination of rib centres, Br; 13.9.2 Depth of diaphragm wall and properties of sections; 13.9.3 Shear stress coefficient, K1; 13.9.4 Trial section coefficients, K2 and Z; 13.10 Example 2: Diaphragm wall; 13.10.1 Design problem; 13.10.2 Characteristic and design loads; 13.10.3 Select trial section; 13.10.4 Determine wind and moment MRs at base; 13.10.5 Consider the stress at level Mw; 13.10.6 Consider diaphragm with deflected roof prop; 13.10.7 Calculate the shear stress; 13.10.8 Stability of transverse shear walls; 13.10.9 Summary; 13.11 Other applications; Chapter 14 Design of multi-storey structures; 14.1 Structural forms; 14.1.1 Stability; 14.1.2 External walls; 14.1.3 Provision for services; 14.1.4 Movement joints; 14.1.5 Vertical alignment of loadbearing walls; 14.1.6 Foundations; 14.1.7 Flexibility; 14.1.8 Concrete roof slab/loadbearing wall connections; 14.1.9 Accidental damage; 14.1.10 Choice of brick, block and mortar strengths; 14.2 Crosswall construction; 14.2.1 Stability; 14.2.2 External cla
Autor | Curtin, W. G. |
---|---|
Ilmumisaeg | 2006 |
Kirjastus | John Wiley And Sons Ltd |
Köide | Kõvakaaneline |
Bestseller | Ei |
Lehekülgede arv | 352 |
Pikkus | 304 |
Laius | 216 |
Keel | English |
Anna oma hinnang