Modular Representations Of Finite Groups Of Lie Type
45,68 €
Tellimisel
Tarneaeg:
2-4 nädalat
Tootekood
9780521674546
Description:
Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationsh...
Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationsh...
Description:
Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references.
Review:
'This is the first comprehensive treatment of the representation theory of finate groups of Lie type over a field of the defining prime charecteristic.' L'enseignement mathematique
Table of Contents:
1. Finite groups of Lie type; 2. Simple modules; 3. Weyl modules and Lusztig's conjecture; 4. Computation of weight multiplicities; 5. Other aspects of simple modules; 6. Tensor products; 7. BN-pairs and induced modules; 8. Blocks; 9. Projective modules; 10. Comparison with Frobenius kernels; 11. Cartan invariants; 12. Extensions of simple modules; 13. Loewy series; 14. Cohomology; 15. Complexity and support varieties; 16. Ordinary and modular representations; 17. Deligne-Lusztig characters; 18. The groups G2; 19. General and special linear groups; 20. Suzuki and Ree groups; Bibliography; Frequently used symbols; Index.
Author Biography:
James E. Humphreys was born in Erie, Pennsylvania, and received his A.B. from Oberlin College, 1961, and his Ph.D. from Yale University, 1966. He has taught at the University of Oregon, Courant Institute (NYU), and the University of Massachusetts at Amherst (now retired). He visits IAS Princeton, Rutgers. He is the author of several graduate texts and monographs.
Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references.
Review:
'This is the first comprehensive treatment of the representation theory of finate groups of Lie type over a field of the defining prime charecteristic.' L'enseignement mathematique
Table of Contents:
1. Finite groups of Lie type; 2. Simple modules; 3. Weyl modules and Lusztig's conjecture; 4. Computation of weight multiplicities; 5. Other aspects of simple modules; 6. Tensor products; 7. BN-pairs and induced modules; 8. Blocks; 9. Projective modules; 10. Comparison with Frobenius kernels; 11. Cartan invariants; 12. Extensions of simple modules; 13. Loewy series; 14. Cohomology; 15. Complexity and support varieties; 16. Ordinary and modular representations; 17. Deligne-Lusztig characters; 18. The groups G2; 19. General and special linear groups; 20. Suzuki and Ree groups; Bibliography; Frequently used symbols; Index.
Author Biography:
James E. Humphreys was born in Erie, Pennsylvania, and received his A.B. from Oberlin College, 1961, and his Ph.D. from Yale University, 1966. He has taught at the University of Oregon, Courant Institute (NYU), and the University of Massachusetts at Amherst (now retired). He visits IAS Princeton, Rutgers. He is the author of several graduate texts and monographs.
Autor | Humphreys, James E. |
---|---|
Ilmumisaeg | 2005 |
Kirjastus | Cambridge University Press |
Köide | Pehmekaaneline |
Bestseller | Ei |
Lehekülgede arv | 250 |
Pikkus | 228 |
Laius | 228 |
Keel | English |
Anna oma hinnang